Algoritmo de Rabin-Karp

Esse algoritmo é baseado no conceito de hashing; portanto, se você não estiver familiarizado com hashing de strings, consulte o artigo string hashing.

Esse algoritmo foi criado por Rabin e Karp em 1987.

Problema: Dadas duas strings - um padrão $s$ e um texto $t$, determine se o padrão aparece no texto e, se aparecer, enumere todas as ocorrências em $O(|s| + |t|)$.

Algoritmo: Calcule o hash para o padrão $s$. Calcule valores de hash para todos os prefixos do texto $t$. Agora, podemos comparar uma substring de comprimento $|s|$ com $s$ em tempo constante usando os hashes calculados. Portanto, compare cada substring de comprimento $|s|$ com o padrão. Isso levará um total de $O(|t|)$. Portanto, a complexidade final do algoritmo é $O(|t| + |s|)$: $O(|s|)$ é necessário para calcular o hash do padrão e $O(|t|)$ para comparar cada substring de comprimento $|s|$ com o padrão.

Implementação

vector<int> rabin_karp(string const& s, string const& t) {
    const int p = 31; 
    const int m = 1e9 + 9;
    int S = s.size(), T = t.size();

    vector<long long> p_pow(max(S, T)); 
    p_pow[0] = 1; 
    for (int i = 1; i < (int)p_pow.size(); i++) 
        p_pow[i] = (p_pow[i-1] * p) % m;

    vector<long long> h(T + 1, 0); 
    for (int i = 0; i < T; i++)
        h[i+1] = (h[i] + (t[i] - 'a' + 1) * p_pow[i]) % m; 
    long long h_s = 0; 
    for (int i = 0; i < S; i++) 
        h_s = (h_s + (s[i] - 'a' + 1) * p_pow[i]) % m; 

    vector<int> occurences;
    for (int i = 0; i + S - 1 < T; i++) { 
        long long cur_h = (h[i+S] + m - h[i]) % m; 
        if (cur_h == h_s * p_pow[i] % m)
            occurences.push_back(i);
    }
    return occurences;
}

Problemas